FAQ

What is a Battery?
A battery, in concept, can be any device that stores energy for later use. A rock, pushed to the top of a hill, can be considered a kind of battery, since the energy used to push it up the hill (chemical energy, from muscles or combustion engines) is converted and stored as potential kinetic energy at the top of the hill. Later, that energy is released as kinetic and thermal energy when the rock rolls down the hill. Not real practical for everyday use though.Common use of the word, “battery” in electrical terms, is limited to an electrochemical device that converts chemical energy into electricity, by a galvanic cell. A galvanic cell is a fairly simple device consisting of two electrodes of different metals or metal compounds (an anode and a cathode) and an electrolyte (usually acid, but some are alkaline) solution.

A “Battery” is two or more of those cells in series, although many types of single cells are usually referred to as batteries – such as flashlight batteries.As noted above, a battery is an electrical storage device. Batteries do not make electricity, they store it, just as a water tank stores water for future use. As chemicals in the battery change, electrical energy is stored or released. In rechargeable batteries this process can be repeated many times. Batteries are not 100% efficient – some energy is lost as heat and chemical reactions when charging and discharging. If you use 1000 watts from a battery, it might take 1050 or 1250 watts or more to fully recharge it.Battery Construction MaterialNearly all large rechargeable batteries in common use are Lead-Acid type. (There are some NiCads in use, but for most purposes the very high initial expense, and the high expense of disposal, does not justify them).

A few Lithium-Ion types are starting to make their appearance, but are much more expensive than Lead-Acid and most charge controllers do not have the correct setpoints for proper charging.The acid is typically 30% Sulfuric acid and 70% water at full charge. NiFe (Nickel-Iron) batteries are also available – these have a very long life, but rather poor efficiency (60-70%) and the voltages are different, making it more difficult to match up with standard 12v/24/48v systems and inverters. The biggest problem with NiFe batteries is that you may have to put in 100 watts to get 70 watts of charge – they are much less efficient than Lead-Acid. What you save on batteries you will have to make up for by buying a larger solar panel system. NiCads are also inefficient – typically around 65% – and very expensive. However, NiCads can be frozen without damage, so are sometimes used in areas where the temperatures may fall below -50 degrees F. Most AGM batteries will also survive freezing with no problems, even though the output when frozen will be little or nothing.

Types of Batteries

Batteries are divided in two ways, by application (what they are used for) and construction (how they are built). The major applications are automotive, marine, and deep-cycle. Deep-cycle includes solar electric (PV), backup power, traction, and RV and boat “house” batteries. The major construction types are flooded (wet), gelled, and AGM (Absorbed Glass Mat). AGM batteries are also sometimes called “starved electrolyte” or “dry”, because the fiberglass mat is only 95% saturated with Sulfuric acid and there is no excess liquid.Flooded may be standard, with removable caps, or the so-called “maintenance free” (that means they are designed to die one week after the warranty runs out). All AGM & gelled are sealed and are “valve regulated”, which means that a tiny valve keeps a slight positive pressure. Nearly all sealed batteries are “valve regulated” (commonly referred to as “VRLA” – Valve Regulated Lead-Acid). Most valve regulated are under some pressure – 1 to 4 psi at sea level.

Battery lifespan

The lifespan of a deep cycle battery will vary considerably with how it is used, how it is maintained and charged, temperature, and other factors. In extreme cases, it can vary to extremes – we have seen L-16′s killed in less than a year by severe overcharging and water loss, and we have a large set of surplus telephone batteries that sees only occasional (10-15 times per year) heavy service that were just replace after 35+ years. We have seen gelled cells destroyed in one day when overcharged with a large automotive charger. We have seen golf cart batteries destroyed without ever being used in less than a year because they were left sitting in a hot garage or warehouse without being charged.

Even the so-called “dry charged” (where you add acid when you need them) have a shelf life of 18 months at most. (They are not totally dry – they are actually filled with acid, the plates formed and charged, then the acid is dumped out).These are some typical (minimum – maximum) typical expectations for batteries if used in deep cycle service. There are so many variables, such as depth of discharge, maintenance, temperature, how often and how deep cycled, etc. that it is almost impossible to give a fixed number.? Starting: 3-12 months? Marine: 1-6 years? Golf cart: 2-7 years? AGM deep cycle: 4-8 years? Gelled deep cycle: 2-5 years? Deep cycle (L-16 type etc): 4-8 years? Rolls-Surrette premium deep cycle: 7-15 years? Industrial deep cycle (Crown and Rolls 4KS series): 10-20+ years.? Telephone (float): 2-20 years. These are usually special purpose “float service”, but often appear on the surplus market as “deep cycle”. They can vary considerably, depending on age, usage, care, and type.? NiFe (alkaline): 5-35 years? NiCad: 1-20 years.

Sealed Batteries

Sealed batteries are made with vents that (usually) cannot be removed. The so-called Maintenance Free batteries are also sealed, but are not usually leak proof. Sealed batteries are not totally sealed, as they must allow gas to vent during charging. If overcharged too many times, some of these batteries can lose enough water that they will die before their time. Most smaller deep cycle batteries (including AGM) use Lead-Calcium plates for increased life, while most industrial and forklift batteries use Lead-Antimony for greater plate strength to withstand shock and vibration.Lead-Antimony (such as forklift and floor scrubber) batteries have a much higher self-discharge rate (2-10% per week) than Lead or Lead-Calcium (1-5% per month), but the Antimony improves the mechanical strength of the plates, which is an important factor in electric vehicles. They are generally used where they are under constant or very frequent charge/discharge cycles, such as fork lifts and floor sweepers.

The Antimony increases plate life at the expense of higher self discharge. If left for long periods unused, these should be trickle charged to avoid damage from sulfation – but this applies to ANY battery.As in all things, there are trade offs. The Lead-Antimony types have a very long lifespan, but higher self discharge rates.Battery Size CodesBatteries come in all different sizes. Many have “group” sizes, which is based upon the physical size and terminal placement. It is NOT a measure of battery capacity. Typical BCI codes are group U1, 24, 27, and 31. Industrial batteries are usually designated by a part number such as “FS” for floor sweeper, or “GC” for golf cart. Many batteries follow no particular code, and are just manufacturers part numbers. Other standard size codes are 4D & 8D, large industrial batteries, commonly used in solar electric systems.
Some common battery size codes used are: (ratings are approximate)

U1 34 to 40 Amp hours 12 volts
Group 24 70-85 Amp hours 12 volts
Group 27 85-105 Amp hours 12 volts
Group 31 95-125 Amp hours 12 volts
4-D 180-215 Amp hours 12 volts
8-D 225-255 Amp hours 12 volts
Golf Cart & T-105 180 to 225 Amp hours 6 volts
L-16, L16HC etc. 340 to 415 Amp hours 6 volts

Temperature Effects on Batteries

Batterycapacity (how many amp-hours it can hold) is reduced as temperature goes down, and increased as temperature goes up. This is why your car battery dies on a cold winter morning, even though it worked fine the previous afternoon. If your batteries spend part of the year shivering in the cold, the reduced capacity has to be taken into account when sizing the system batteries. The standard rating for batteries is at room temperature – 25 degrees C (about 77 F). At approximately -22 degrees F (-27 C), battery AH capacity drops to 50%. At freezing, capacity is reduced by 20%. Capacity is increased at higher temperatures – at 122 degrees F, battery capacity would be about 12% higher.Batterycharging voltage also changes with temperature.

It will vary from about 2.74 volts per cell (16.4 volts) at -40 C to 2.3 volts per cell (13.8 volts) at 50 C. This is why you should have temperature compensation on your charger or charge control if your batteries are outside and/or subject to wide temperature variations. Some charge controls have temperature compensation built in (such as Morningstar) – this works fine if the controller is subject to the same temperatures as the batteries. However, if your batteries are outside, and the controller is inside, it does not work that well. Adding another complication is that large battery banks make up a large thermal mass.Thermal mass means that because they have so much mass, they will change internal temperature much slower than the surrounding air temperature. A large insulated battery bank may vary as little as 10 degrees over 24 hours internally, even though the air temperature varies from 20 to 70 degrees. For this reason, external (add-on) temperature sensors should be attached to one of the POSITIVE plate terminals, and bundled up a little with some type of insulation on the terminal. The sensor will then read very close to the actual internal battery temperature.Even though battery capacity at high temperatures is higher, battery life is shortened.

Battery capacity is reduced by 50% at -22 degrees F – but battery LIFE increases by about 60%. Battery life is reduced at higher temperatures – for every 15 degrees F over 77, battery life is cut in half. This holds true for ANY type of Lead-Acid battery, whether sealed, gelled, AGM, industrial or whatever. This is actually not as bad as it seems, as the battery will tend to average out the good and bad times.?Click on the small graph to see a full size chart of temperature vs capacity.One last note on temperatures – in some places that have extremely cold or hot conditions, batteries may be sold locally that are NOT standard electrolyte (acid) strengths. The electrolyte may be stronger (for cold) or weaker (for very hot) climates. In such cases, the specific gravity and the voltages may vary from what we show.

Cycles vs Life

A battery “cycle” is one complete discharge and recharge cycle. It is usually considered to be discharging from 100% to 20%, and then back to 100%. However, there are often ratings for other depth of discharge cycles, the most common ones are 10%, 20%, and 50%. You have to be careful when looking at ratings that list how many cycles a battery is rated for unless it also states how far down it is being discharged. For example, one of the widely advertised telephone type (float service) batteries have been advertised as having a 20-year life. If you look at the fine print, it has that rating only at 5% DOD – it is much less when used in an application where they are cycled deeper on a regular basis. Those same batteries are rated at less than 5 years if cycled to 50%.

For example, most golf cart batteries are rated for about 550 cycles to 50% discharge – which equates to about 2 years.Batterylife is directly related to how deep the battery is cycled each time. If a battery is discharged to 50% every day, it will last about twice as long as if it is cycled to 80% DOD. If cycled only 10% DOD, it will last about 5 times as long as one cycled to 50%. Obviously, there are some practical limitations on this – you don’t usually want to have a 5 ton pile of batteries sitting there just to reduce the DOD. The most practical number to use is 50% DOD on a regular basis. This does NOT mean you cannot go to 80% once in a while.

It’s just that when designing a system when you have some idea of the loads, you should figure on an average DOD of around 50% for the best storage vs cost factor. Also, there is an upper limit – a battery that is continually cycled 5% or less will usually not last as long as one cycled down 10%. This happens because at very shallow cycles, the Lead Dioxide tends to build up in clumps on the the positive plates rather in an even film. The graph above shows how lifespan is affected by depth of discharge. The chart is for a Concorde Lifeline battery, but all lead-acid batteries will be similar in the shape of the curve, although the number of cycles will vary.

Battery Voltages All Lead-Acid?

batteries supply about 2.14 volts per cell (12.6 to 12.8 for a 12 volt battery) when fully charged. Batteries that are stored for long periods will eventually lose all their charge. This “leakage” or self discharge varies considerably with battery type, age, & temperature. It can range from about 1% to 15% per month. Generally, new AGM batteries have the lowest, and old industrial (Lead-Antimony plates) are the highest. In systems that are continually connected to some type charging source, whether it is solar, wind, or an AC powered charger this is seldom a problem. However, one of the biggest killers of batteries is sitting stored in a partly discharged state for a few months. A “float” trickle charge should be maintained on the batteries even if they are not used (or especially if they are not used). Even?most?”dry charged” batteries (those sold without electrolyte so they can be shipped more easily, with acid added later) will deteriorate over time. Max storage life on those is about 18 to 30 months.

Batteries self-discharge faster at higher temperatures. Lifespan can also be seriously reduced at higher temperatures – most manufacturers state this as a 50% loss in life for every 15 degrees F over a 77 degree cell temperature. Lifespan is increased at the same rate if below 77 degrees, but capacity is reduced. This tends to even out in most systems – they will spend part of their life at higher temperatures, and part at lower. Typical self discharge rates for flooded are 5% to 15% per month.

Amp-Hour Capacity

All deep cycle batteries are rated in amp-hours. An amp-hour is one amp for one hour, or 10 amps for 1/10 of an hour and so forth. It is amps x hours . If you have something that pulls 20 amps, and you use it for 20 minutes, then the amp-hours used would be 20 (amps) x .333 (hours), or 6.67 AH. The generally accepted AH rating time period for batteries used in solar electric and backup power systems (and for nearly all deep cycle batteries) is the “20 hour rate“. (Some, such as the Concorde AGM, use the 24 hour rate, which is probably a better real-world rating).? This means that it is discharged down to 10.5 volts over a 20 hour period while the total actual amp-hours it supplies is measured.

 

Sometimes ratings at the”6 hour rate and 100 hour rate” are also given for comparison and for different applications. The 6-hour rate is often used for industrial batteries, as that is a typical daily duty cycle. Sometimes the 100 hour rate is given just to make the battery look better than it really is, but it is also useful for figuring battery capacity for long-term backup amp-hour requirements.
Why amp-hours are specified at a particular rate:

Because of something called the?Peukert Effect. The Peukert value is directly related to the internal resistance of the battery. The higher the internal resistance, the higher the losses while charging and discharging, especially at higher currents. This means that the faster a battery is used (discharged), the LOWER the AH capacity. Conversely, if it is drained slower, the AH capacity is higher. This is important because some manufacturers and vendors have chosen to rate their batteries at the 100 hour rate – which makes them look a lot better than they really are. Here are some typical battery capacities from the manufacturers data sheets:

Battery Type

100 hour rate

20 hour rate

8

Trojan T-105

250 AH

225 AH

n/a

USBattery2200

n/a

225 AH

181 AH

Concorde PVX-6220

255 AH

221 AH

183 AH

Surrette S-460 (L-16)

429 AH

344 AH

282 AH

Trojan L-16

400 AH

360 AH

n/a

Surrette CS-25-PS

974 AH

779 AH

639 AH

State of Charge

Here are no-load typical voltages vs state of charge:

(figured at 10.5 volts = fully discharged, and 77 degrees F). Voltages are for a 12 volt battery system. For 24 volt systems multiply by 2, for 48 volt system, multiply by 4. VPC is the volts per individual cell – if you measure more than a .2 volt difference between each cell, you need to equalize, or your batteries are going bad, or they may be sulfated. These voltages are for batteries that have been at rest for 3 hours or more. Batteries that are being charged will be higher – the voltages while under charge will not tell you anything, you have to let the battery sit for a while. For longest life, batteries should stay in the green zone. Occasional dips into the yellow are not harmful, but continual discharges to those levels will shorten battery life considerably. It is important to realize that voltage measurements are only approximate. The best determination is to measure the specific gravity, but in many batteries this is difficult or impossible. Note the large voltage drop in the last 10%.

State of Charge

12 Volt battery

Volts per Cell

100%

12.7

2.12

90%

12.5

2.08

80%

12.42

2.07

70%

12.32

2.05

60%

12.20

2.03

50%

12.06

2.01

40%

11.9

1.98

30%

11.75

1.96

20%

11.58

1.93

10%

11.31

1.89

0

10.5

1.75